CBT CLASS XII MATHS DECEMBER-2023

<u>GENERAL INSTRUCTION :</u> CHAPTER: LINEAR PROGRAMMING PROBLEM

Sr.No	APTER: LINEAR PROGRAMMING PROBLEM Ouestion	Marks
51.110	Case Study 1	marks
	Based on the following diagram, answer the following questions	
	Y	
	(0, 104)	
	c (0, 38)	
	B(44,16)	
	X 0 A(52, 0) (76, 0) X	
	Ŷ	
1	The feasible region of an LPP is given in following figure then the constraint of LPP are	1
	(a) $2x + y \le 52$, $x + 2y \le 76$, $x, y \ge 0$	
	(b) $2x + y \le 104$, $x + 2y \le 76$, $x, y \ge 0$	
	(c) $x + 2y \le 104$, $2x + y \le 76$, $x, y \ge 0$ (d) $x + 2y \le 104$, $2x + y \le 38$, $x, y \ge 0$	
2	In above LPP optimal solution occurs, if objective function for LPP is	1
4	Max $Z= 2x + y$	1
	(a) at point B	
	(b) at point A	
	(c) at point C	
	(d) on line segment AB	
3	In above LPP objective function is $Max Z = px + qy$, and objective function	1
0	attain its max value at $(0,38)$ and $(44,16)$ then relation between p and q is	1
	(a) $2p = q$	
	(a) $2p - q$ (b) $p = 2q$	
	(b) $p = q$	
	(d) $3p = 2q$	
4	In above LPP objective function is Min Z = $3x - 4y$ then optimum solution of	1
Т	LPP is	1
	(a) (0,0)	
	(a) (0,0) (b) (44,16)	
	(c) (0,38)	
	(d) (52,0)	
	Case Study 2	
	Read the following passage and answer the following questions	
	Linear programming Problem is a method of or finding the optimal values (maximum or	
	minimum) of quantities subject to constraints when relationship is expressed as a linear	
	equations or linear inequations.	
	The corner points of a feasible region determined by the system of linear constraints are as	
	shown below	
	• B(4,10)	
	A(0,6) C(6,6)	
	-D(6.4)	
	x' < 0 $E(5.0) > x$	
5	Number of corner points in the feasible region	1
-	(a) 4	
	(b) 5	
	(c) 6	
-	(d) 7	
6	If $Z = 2x - 5y$ then the minimum value of this objective function	1
	(a) -30	

		-
	(b) -42	
	(c) -50	
	(d) -18	
7	If objective function $Z = 2x - 5y$ then max(Z) +min(Z) =	1
	(a) -32	
	(b) -30	
	(c) -28	
	(d) -26	
8	In a LPP, the linear inequalities or restrictions on the variables are called	1
	(a) Objective Function	
	(b) Feasible Region	
	(c) Decision Variables	
	(d) Constraint	
	 Directions: (Q.9 - Q.10) Each of these questions contains two statements: Assertion (A) and Reason (R). Each of these questions also has four alternative choices, any one of which is the correct answer. You have to select one of the options (a), (b), (c) and (d) given below: (a) A is true, R is true and R is a correct explanation for A (b) A is true, R is true and R is not a correct explanation for Assertion (c) A is true and R is false (d) A is false and R is true 	
9	Assertion: The maximum value of $Z = x + 3y \le 20$, $x + 2y \le 20$, $x \ge 0$, $y \ge 0$ is 30	1
-	Reason: The variable that enter into the problem are called decision variable	
	a b c d	
10	Assertion: The maximum value of $Z = 5x + 3y$, satisfying the conditions $x \ge 0$, $y \ge 0$ and	1
-	$5x + 2y \le 10$ is 15	
	Reason: The feasible region may be bounded or unbounded	
	a b c d	

Answer Key

Ans1	(b)
Feedback	<i>Option (b) is correct, Since constraint LPP are</i> $2x + y \le 104$, $x + 2y \le 76$, $x, y \ge 0$
Ans2	(d)
Feedback	Option (d) is correct, Since optimum solution occurs on A and B and on line segment AB
Ans3	(a)
<u>Feedback</u>	Option (a) is correct, Since Max Z at (0,38) is 38q and max Z at (16,44) is $16p + 44q$ therefore $38q = 16q + 44p$ 22 q = 44p hence $2p = q$
Ans4	(c)
<u>Feedback</u>	<i>Option (c) is correct, Since value of Z at (0,0), (52,0), (16,44) (0,38) are respectively 0 , 156 , 68, -152 hence optimum solution on (0,38)</i>
Ans5	(c)
Feedback	Option (c) is correct, Since as per given diagram 6 corners
Ans6	(b)
<u>Feedback</u>	<i>Option (b) is correct, Since values of objective function 2x-5y at O(0,0) E(5,0), D(6,4), C(6,6), B(4,10), A(0,6) are 0,10,-8,-18 , -42, -30 so min value of objective function is -42 at (4,10)</i>
Ans7	(a)
<u>Feedback</u>	<i>Option (a) is correct, Since Since values of objective function 2x-5y at O(0,0) E(5,0), D(6,4), C(6,6), B(4,10), A(0,6) are 0,10,-8,-18, -42, -30 so sum of minimum and maximum value is -32</i>
Ans8	(d)
<u>Feedback</u>	Option (d) is correct, Since In a LPP, the linear inequalities or restrictions on the variables are called Constraints
Ans9	(b)
Feedback	Option (b) is correct, Since A is true , R is true and R is not a correct explanation for Assertion
<u>Ans10</u>	(b)
<u>Feedback</u>	<i>Option (b) is correct, Since A is true , R is true and R is not a correct explanation for Assertion</i>